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The wave motion obtained for the stationary problem examined above will always be stable. 
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APPARENT INTERNAL WAVES IN A FLUID WITH EXPONENTIAL DENSITY 
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On the basis of a modified stationary phase method proposed in [i, 2], the constant 
phase surfaces of internal waves excited by a body moving at an arbitrary angle to the hori- 
zon, which agree satisfactorily with those observed experimentally, are determined in [3] in 
the plane and three-dimensional cases. Taking account of the integral transforms [4, 5], 
the plane and spatial problems of wave motions occurring during the flow around submerged 
sources and sinks of identical intensity by a uniform fluid stream stratified with respect 
to the density are considered by numerical methods in a linear formulation in [6]. The 
asymptotic solution for the wave field excited by a dipole and an arbitrary source-sink 
system moving in an exponentially stratified fluid is obtained in [7, 8]. These solutions 
describe the wave pattern occurring during motion of a body at high velocities. 

The purpose of this paper is the determination of the amplitude phase characteristics 
of apparent internal waves in a fluid with an exponential density distribution for uniform 
horizontal body displacement in a broad range of motion regimes (including motion at low 
velocities) and their subsequent comparison with the results of laboratory experiments. 
Dissipative and diffusion effects (i.e., the change in particle density during motion is not 
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taken into account) and the influence of the free surface are neglected in the solution. 

It is considered that the fluid is infinitely deep. 

The system of hydrodynamic equations governing the velocity field v has the form 

(a/ot + vv)pv -= --VP -i- pg, (O/Ot + vv) p = O, VV = m, (1) 

where t is the time, p is the density, p is the pressure, g is the acceleration of gravity, 
m(x, y, z, t) is the source and sink distribution in the fluid, and V = ;a/ax-~-mo/oy-~ 
nOtaz. 

The analysis is performed in the OXYZ laboratory coordinate system (the X axis is 

directed along the line of body motion, the Z axis is vertically upward) and the coordinate 
system OX*YZ (x* = x -- Ut) coupled to the body. 

The problem is solved in the Boussinesq approximation. The dimensional parameters of 
the problem are: po(z) = po(0)exp[--z/A] is the fluid density, A = [d inpo(z)/dz] -~ is the 
scale of the stratification, Tis the period and the frequency of free internal vibrations in 
the fluid is N = ~ ,  T = 2~/N; d is the vertical and L the horizontal dimension of the 
body, and U is the velocity of its motion; ~o is the amplitude and A the phase of the in- 
ternal wave. 

The nondimensional parameters are: Fr = U2/Nad 2 is the internal Froude number; C = A/d 
is the scale ratio; ~ = L/d is the body elongation; x ~ = x*N/AU, yO = yN/AU, z ~ = zN/AU are 

dimensionless coordinates. 

Irrotational flow around a body by a stream of homogeneous ideal fluid is equivalent 
to the flow around a combination of sources and sinks [9]. This result can be extended to 
a stratified fluid also in the case of small gradients, when the fluid density varies in- 
significantly in ranges on the order of the body dimension [6]. 

Motion of a dipole and a system consisting of a source and sink of equal intensity 
located at a range 2a is considered. 

Taking account of the coupling between the vertical deviation of a constant density 
surface from the equilibrium position B(x, y, z, t) and the vertical velocity component [7], 
the linearized system (i) is reduced to the following equation: 

to'? ~ + au ~ o-~, ' N~I~i" : [9~ = a'--f [9o(z)m(x,y,z,t)]. (2) 

Values of re(x, y, z, t) are presented in [6, 7] for the motion of plane and three- 
dimensional bodies. 

A solution of (2) is sought with zero boundary conditions at infinity. Steady-state 
wave motion is considered. 

The internal waves being formed during uniform body motion in a stratified fluid are 
called apparent since the wave pattern is stationary in the coordinate system coupled to 
the body. 

Taking into account that m = --~U for uniform horizontal body motion, the asymptotic 
solution of (2) has the form [I] 

4nu'~ BF(~'~'?)exp[[(ax*+ ~Y+Vz)]-~ O( I ) (3) ~(x*,y,z) 
= ~ ~ i v~o I l q - f 7  ; :~ j  

as r *-~~ along any radius-vector q; the summation is over all points k : {~, 6, ?} of the 
wave number surface defined by the dispersion relation 

c(~,  ~, ~) --= (~u)~(~ ~ + ~ + ~ )  - x~(~ - + ~)  = o. (4~ 

in which the normal to the surface is parallel to q and 

r*.v~G ( ~ ~ a ~ ( 5 )  
aG > 0 ~ V '  =1-----  m 

under the condition that the surface (4) has nonzero Caussian curvature K at each of these 
points Ill. The coei~icient B depends on the slgn of the curvature and the shape of the 
wave number surface (4), while ~(e, 6, 7) is the }ourier transform of the rlght side of (2). 
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{x, 
By analogy with [I], the asymptotic solution of (2 )  in the plane case (the coordinates 

z } )  i s  
1 

'~ ('~*' :: " "* -- i v~:oi g ) - < ~  , 

as r*-~ ~ along any radius vector q: summation is over all points k -= {a, y} of the curve 

Tr 2~ ~ G ( ~ , I ' ) - : - : ( a ~ ) ~ -  ~ 7 ~) .V~ ~ = 0 ,  

w h e r e  t h e  n o r m a l  t o  t h e  c u r v e  i s  p a r a l l e l  t o  q and  (5)  i s  s a t i s f i e d .  

As i s  s e e n  f r o m  (3)  and  ( 6 ) ,  t h e  c o n s t a n t - p h a s e  s u r f a c e s  h a v e  t h e  f o r m  k - r *  = A. 
Since the vector r* is parallel to the normal to the surface g = 0 at the point k, then 

r *  ~ A 
k ' - 7 ~  G V':G" (7)  

T a k i n g  a c c o u n t  o f  ( 4 ) ,  i t  f o l l o w s  f r o m  t h e  s o l u t i o n  o f  t h e  s y s t e m  (7)  t h a t  t h e  c o n -  
s t a n t - p h a s e  s u r f a c e s  a r e  d e s c r i b e d  i n  t h e  t h r e e - d i m e n s i o n a l  c a s e  b y  t h e  e q u a t i o n  

�9 (xO)~ === [(yo)~ ~- (~O),l L ~  - ~ ' ( 8 )  

Which  a g r e e s  w i t h  [3 ,  1 0 ] .  I n  t h e  p l a n e  c a s e  

(x~ ~ + (z~ ~ = I. ( 9 )  

F o r m u l a s  (8 )  and  (9 )  h a v e  b e e n  d e r i v e d  f o r  a p o i n t  s o u r c e ,  when no i n t e r f e r e n c e  o c c u r s  
b e t w e e n  t h e  w a v e s  e x c i t e d  by  i t s  d i s t i n c t  p a r t s ,  w h i c h  c o u l d  a l t e r  t h e  p a t t e r n  o b t a i n e d  f o r  
t h e  c o n s t a n t - p h a s e  s u r f a c e s .  

T h e  i n e q u a l i t y  (5 )  i s  t h e  r a d i a t i o n  c o n d i t i o n  a c c o r d i n g  t o  w h i c h  a l l  t h e  w a v e s  a r e  
generated by a source and do not arrive at infinity. It follows therefrom that wave-forma- 
tion occurs only behind the moving body, i.e., for x* < O, and in the spherical {r*, ~,0} 
c o o r d i n a t e s  c o u p l e d  t o  t h e  b o d y  x* = r ' c o s 0 ,  y = r * s i n 0 c o s %  z = r * s i a 0 s i n T  f o r  0 > ~ / 2 .  

�9 The p o i n t s  k = {~, ~ , ? }  o f  t h e  wave  number  s u r f a c e  ( 4 ) ,  i n  w h i c h  t h e  n o r m a l  t o  t h e  
s u r f a c e  i s  i n  a g r e e m e n t  w i t h  t h e  d i r e c t i o n  c h o s e n  r* = (x*, y, z}, a r e  f o u n d  f rom t h e  s y s t e m  

(~g)2(~ + ~2 ~_ ~2) _ N~(~2 + B2) := O, [ v ~ G . r * ]  = O. (i0) 

The vector equation of the system (i0) contains two linearly independent equations. 
Taking account of the ~, ~, and y determined from (I0): 

+ 2 ~ V s i n  T cosO, ~=:  J .V cos:0 / t --cos2OsineT 
= - -  Y _ b . ~ , (  sin ~ cosg ,  ! , = 4 - T - :  sinO 

the wavelength is 

L =  2a := U7- _ UTsin 0 (ii) 

x*~y 2 ~ f  -- sin s 9 cos~ O" 

The wavelength in the y = 0 plane is identical everywhere and equals ko = UT; outside 
this plane % tends to zero as it approaches the X axis. 

In the case of uniform horizontal motion of a dipole in a deep fluid with weak stratifi- 
cation, the vertical displacement ~ defined by (3) agrees with the solution in [7]. For 
small U (or large k), a singularity of the form I/U is observed in the solution in [7]. 

In the case of motion of a source--sink system, it follows from (3) that 

t[- | "a~_u R ~ }/'1 -- sin" ~ cos~--~ 
3~ (r*, O, ~,1 , .... ,~ sin 0 ' 

/ Na ~ ~ ,Yr* . '~ O (  i s i n l - - g - s i n g c ~  c ~  \ 7  ]' 
k ' ' ,  

t'* - + o o . . " r ' 2 < O < a  (for O = a ,  g : 0 ) .  

(12) 
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The vertical displacement 
tory coordinate system ~(x, y, z, t) does not tend to zero at the fixed point x, y, 
(y ~ O) as t -~ exactly as the solution in [7]. 

In the plane case for flow around a dipole, it follows from (6) that 

r* -+  ~ ,  ~ * ~ 0 ,  

and f o r  t he  f l o w  a round  a s o u r c e - s i n k  s y s t e m  

U~O. 

(12) does not vanish as U+0. Upon going over to the labora- 
Z 

(13) 

. V , . y (,. 
arc tg( -~)  ~~ ~ - s i n ~  U r*] c~ U 4- ' 

k / 

r* -~ c~, x* ~ O. 

Both n z ( x ,  z ,  t )  and n3 (x ,  z ,  t )  t e n d  to  z e r o  as  t-~o; h o w e v e r ,  o n l y  (14) v a n i s h e s  as  

The singularities noted above for the solutions for point perturbations, the dipole in 
[7], the source-sink pair (12), 
three-dimensional body in an inviscid fluid by the motion of point perturbations for not 
only low [7] but even high velocities when Fr >> 1 and can be eliminated by replacing 
the delta function in the system (i) by a sequence of classical functions of the form 

<xl) f -  rillS] 
(~ _VT)~ + 6(r), ; ~ o .  

The case under consideration of the flow around distributed sources and sinks at 
ranges bl < r <--5. A (b >> i) is equivalent to the flow around point sources and sinks of 
intensity M~ = Moerf3(b), which corresponds to the flow around an ovoid, where Mo is the 
intensity of the point sources [9]. 

Then taking account of (5) it follows from (3) that in the Boussinesq approximation 
(Xo = UT << A) 

indicate the nonequivalence of replacing the motion of a 

(15) 

' I E()I t - -  - ,~l ~ R ~ - / W + R '  V ~ - ~ i , , ' ~ o o ~ )  ( 1 6 )  (16)~+(r *, 0. ~): exp 4.r exp -- -~ ~_, a - - s i l l 0  

X s i r , ( ~ s i n ( ~ c o s O ' )  <Xr* . f'N , - - s i n  ~q~eos'O~ . . cos I -U" sm (9 sgn (sin (b) 2AU 7i~"  / 

( 5 )  " ! 0 , r * - + o o ,  -5-<0<~. 

The second  e x p o n e n t i a l  f a c t o r  r e s u l t s  i n  t h e  r a p i d  a t t e n u a t i o n  o f  (16) as  U-~0 and 
e x e r t s  s l i g h t  i n f l u e n c e  f o r  h i g h  U. For  h i g h  v e l o c i t i e s  ~+ % 1 / U ,  t h e  a m p l i t u d e  [~+o] o f  t h e  
v e r t i c a l  d i s p l a c e m e n t  (16) has  maximums a t  t h e  p o i n t s  U n d e t e r m i n e d  f o r  l << t o / ~  f rom t h e  
condition 

Na 
v--~l s i n ,  co~Ol--- - ~  ~- nn, ,~ =- o, 1, 2 . . . .  (17) 

as  t h e  v e l o c i t y  d i m i n i s h e s ,  

As l i n c r e a s e s ,  t h e  maximums o f  t h e  a m p l i t u d e s  s h i f t  n e g l i g i b l y  toward  h i g h e r  U. 

The d e p e n d e n c e  o f  t h e  i n t e r n a l  wave a m p l i t u d e  on t h e  s t r e a m l i n i n g  v e l o c i t y  f o r  s m a l l  U 
such that Fr a = U~/(N*a *) < 1 is explained by interference of waves from coherent sources 
(sources and sinks) located at the range 2a. The maxima of the amplitudes are observed 
in the XZ plane for U = U n determined from 

.va cos 01 = I : ~ ( i n + l ) ,  n O , J , 2 , . . ,  (18) 

from which it follows that 

2altos Ol = nh,~ -~- Ln/2. 7~n : U~T,  
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which is a condition of the interference. The appearance of the %n/2 is related to the 
opposing effects of the source and sink. 

It follows from (18) that for low velocities (Fr a < I), there are several amplitude 
maxima at different angles O n 

lCOS0nl- -  NaU ~ ( 2 n - z - t ) ,  . . . .  n - - - 0 ,  t ,  9, (19) 

As the velocity increases, the maxima shift to the trace axis. 

For the motion of an extended body with elongation $ = a/R the internal wave amplitude 
is I~1% ~--~--~ for Fr a >> I, which agrees with [6], while [~] ~ /i + l/~ 2 for 
Fr a < i and decreases as the elongation grows. 

The shape of the constant-wave surface differs somewhat from (8) for motion of the 
distributed source-sink since the phase addition 

sgn(s in  ~) I~N 1 -  sin2~cos~0 
2AU sin 0 ' 

whose value increases with the approach to the X axis, enters into (16). 

Upon going over to the laboratory coordinate system OXYZ, it follows from (16) that 

n+ (O, ,q, z, t) : -  ex t) ~ exp - -  ~ / , t  , ( y2+a2 ) : / _  ] (20 )  

.. R z r ]/ a ~ _,_ l? z Z 2 (Ut) z 
a ~/:'/" + z~ t �9 yz _[_ z~ (Ut),z + y.,. _]. zz 

X sin { Na z Ut " -- 
,--U- 1/y2-+z,,. ( ' (Ut)~+f .  + ~  co~ (Ut)~'- '~ !7"~ ~-z 2 

z l 2 sgn (z) t - -  (Ut)2 ] 
, Z ] / ' y 2 _ ~ z  2 y 2 . . ~ z  2 (Ut )2_ i_y2_j_  z 2 , j 

-~-O((ut) 2+ty2+z 2), ] /(Ut)"-?g" ~-z~-+oo, t > 0 .  

f -  

The expression (20) vanishes as t-~o for y = 0 because the term VI 

decreases, and for y # 0 because of the decrease in the second exponential factor. 
frequency of oscillation tends to 

z ~ (Ut) ~ 
, 'P . ") . 2 y 2  - ?  Z2 (U~.  ) -  - ' .  y -  . i.- z 

The 

N [ fZ Y2 ]~.~ N z 

as time passes. 

The first oscillations have a period somewhat greater than T(/y= + z2)/z. 

The asymptotic solution is applicable at large ranges (compared to the wavelength) 
from the source: 

r * > > ~  o. 

The inequality 
[qol << 

(2i) 

is the linearity criterion. 

If % ~ ~l then the linear solution (16) is valid when the condition 

XoR ~ ] / " a ~  I s i n '  Na a ( - ' 0 -  sin q) e~ 0) 1 
r* >> e (nl) ~ 

is satisfied, which is equivalent for Fr a ~ 1 to 

" %o R~ V a 2 + R ~ 
r* >> e(~t) 2 a ' 

(22) 
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Fig. I Fig. 2 

and for Fr a >> i to 

2R~ ]/'-~i-+ R2 
r*>> eaZa I sinep cosO I , 

where e is the base of the natural logarithms. 

If % > ~, then the linear solution (16) is valid when the inequality 

R2~,~ ~ a  ~ i-l~ 2 sin{,V,~ ) - I - - s i n q ,  cosO i 
r * > >  ~ :  , a ~ U I (23) 

is satisfied, which is equivalent for F r a  ~ 1 to 

and for Fr~ >> 1 to 

tr ] / a  u q- Ir 

It follows from (22) and (23) that a domain exists near the X axis where the linear 
solution is not valid. 

An experimental investigation of apparent internal waves was performed in a 1.5 • 0~ x 
0.4 m laboratory tank filled with an aqueous solution of common salt with a homogeneous con- 
centration gradient (density), A= 4.4 m, N = 1.5 see -~, T = 4.2 sec. The phase patterns 
were recorded by using an s shadowgraph, and the amplitudes by using a "single-point ~' 
contact converter of the electrical conductivity [ii]. The boundaries ol the dark and 
light bands on the shadow photograms are the peaks and valleys of the waves; the blackening 
density is proportional to the wave amplitude. The tests performed showed that because of 
the blocking effect in the stratified fluid, the fluid velocity and density profiles vary 
at ranges on the order of a diameter ahead of and behind the body. It can hence be con- 
sidered that internal waves are radiated by the whole system consisting of the body and the 
fluid it entrained. In connection with the presence of viscosity, the entrained fluid has 
an ovoidal shape. 

The wave pattern in the XZ plane that occurs during horizontal motion of an elongated 
body d = I cm, L = 8 cm with velocity U = 1 cm/sec, T = 4.2 sec is represented in Fig. i. 
The break in the wave surfaces observed in the moving picture presented is explained by a 
phase jump of ~ as the sign of sin ((Nc~/U)cos 0) changes. The angles 0p at which the break 
occurs are determined from the condition 

(Na/U)l cos Or, ! : xp,  p 1,2, :{ .. . .  ( 2 4 ) .  

In this case (0p = 56 ~ , p = i), it follows from (24) that 2~ = 7.6 cm, which agrees 
approximately with L. 

Because of the blocking effect, an analogous pattern can be observed in the motion oi 
a sphere (Fig. 2, y = 0, d = 2 cm, U = 1.02 c~.isec, T = 4.2 sec, l'r = 0.ii, 01 = 20~ Here 
~ = 2.25 cm is determined from (24). 
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Fig. 3 
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Fig. 4 Fig. 5 

The wave pattern in the XZ plane that occurs during horizontal motion of a sphere d = 
2 cm with velocity U = 0.64 cm/sec, T = 4.2 sec, Fr = 0.044 is represented in Fig. 3. As 
the velocity diminishes, the effective horizontal dimension of the domain of internal wave 
excitation increases. A break in the phase surface is observed on the shadowgram at the 

angle 8p = 39 ~ (p = 2) and in the interference maximum of the amplitude at the angle O n = 
22 ~ (n = 2) to the motion axis. Substitution of the mentioned values of 8 n and ep in (18) 
and (24) yields similar values for the half-range between the centers of the sources a~ = 
3.6 cm and a2 = 3.45 cm. 

The solutions (13), (14), (16) obtained are antisymmetric with respect to the plane 
(line) z = 0 in the three-dimensional (planar) case. Mathematically this is associated 
with the change in sign of sin ~ or (z) during passage from the upper to the lower half- 
space (half-plane), and physically with the opposite initial displacements in these half- 
spaces (half-planes). It is seen in Figs. 1-3 that the wave crest in the upper half-plane 
corresponds to the trough in the lower. 

A recording of measurements of the magnitude of the vertical fluid particle displace- 
ment q(0, y, z, t) is presented in Fig. 4 for horizontal motion of the sphere d = 2.5 cm 
with velocity U = 1.65 cm/sec, T = 4.2 sec, Fr = 0.19 at the point y = 0, z = 5 cm. The 
points i, 3, 5 are the troughs, and 2, 4, 5 the crests. The arrival time computed by means 
of (16) for the wave crests and troughs at the measurement points t n = 2.9, 5.5, 7.8, i0, 
12.1, 14.2 sec (n = i, 2, ..., 6) is in good agreement with those observed experimentally 
even for the primary waves. For the case given the solution (16) agrees with experiment 
for the selection ~ = 2.5 cm, ~ ~ i cm; then the computed ratios of the vibration spans 

IN01,+~3_jN.I n (n = i, 2, 3, 4) equal 1.4, 1.38, 1.25, 1.2. It follows from the recordings 

that these ratios are 0.88, 1.56, 1.24, 1.14. As the range to the source increases, the 
difference between the computed and observed quantities diminishes. 

The dependence of the maximum particle displacement in the internal wave is represented 
in Fig. 5 for horizontal motion of a sphere of diameter d = i cm in a fluid with A = 4.2 m 
(point i) and A = 17 m (point 2) at the point y = O, z = 12 cm. The slope of the line on 
the graph corresponds to the dependence Fr -I/2 which agrees with the law for the decrease 
in the amplitude qo ~ I/U for Fr >> i, while I --- 1.3 cm for Fr < 0.8. 
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As the sphere moves with high velocities (Fr > i) 1 < d/4, and a < d also diminishes 
as the velocity increases. 

The solution (16) obtained agrees satisfactorily with laboratory test results even at 
distances on the order of 2%o. 

Since the wavelength is less or on the order of the body dimensions for Fr << i~ then 
the influence of viscosity should be taken into account in determining the amplitude char- 
acteristics of the internal waves. 
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